On Bojarski’s Index Formula for Nonsmooth Interfaces

نویسنده

  • MARIUS MITREA
چکیده

Let D be a Dirac type operator on a compact manifold M and let Σ be a Lipschitz submanifold of codimension one partitioningM into two Lipschitz domains Ω±. Also, let Hp±(Σ, D) be the traces on Σ of the (Lpstyle) Hardy spaces associated with D in Ω±. Then (Hp−(Σ, D),Hp+(Σ, D)) is a Fredholm pair of subspaces for Lp(Σ) (in Kato’s sense) whose index is the same as the index of the Dirac operator D considered on the whole manifold M.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subelliptic Spin C Dirac operators, I

Let X be a compact Kähler manifold with strictly pseudoconvex boundary, Y. In this setting, the SpinC Dirac operator is canonically identified with ∂̄ + ∂̄∗ : C∞(X ; Λ) → C∞(X ; Λ). We consider modifications of the classical ∂̄-Neumann conditions that define Fredholm problems for the SpinC Dirac operator. In part 2, [7], we use boundary layer methods to obtain subelliptic estimates for these bound...

متن کامل

On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...

متن کامل

A Modified BFGS Formula Using a Trust Region Model for Nonsmooth Convex Minimizations

This paper proposes a modified BFGS formula using a trust region model for solving nonsmooth convex minimizations by using the Moreau-Yosida regularization (smoothing) approach and a new secant equation with a BFGS update formula. Our algorithm uses the function value information and gradient value information to compute the Hessian. The Hessian matrix is updated by the BFGS formula rather than...

متن کامل

A General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming

For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints‎, ‎we define a new gap function that generalizes the definitions of this concept in other articles‎. ‎Then‎, ‎we characterize the efficient‎, ‎weakly efficient‎, ‎and properly efficient solutions of the problem utilizing this new gap function‎. ‎Our results are based on $(Phi,rho)-$invexity‎,...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999